Differential Evolution Algorithms for Finding Predictive Gene Subsets in Microarray Data

نویسندگان

  • Dimitris K. Tasoulis
  • Vassilis P. Plagianakos
  • Michael N. Vrahatis
چکیده

the selection of gene subsets that retain high predictive accuracy for certain cell-type classification, poses a central problem in microarray data analysis. The application and combination of various computational intelligence methods holds a great promise for automated feature selection and classification. In this paper, we present a new approach based on evolutionary algorithms that addresses the problem of very high dimensionality of the data, by automatically selecting subsets of the most informative genes. The evolutionary algorithm is driven by a neural network classifier. Extensive experiments indicate that the proposed approach is both effective and reliable.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Identification of Alzheimer disease-relevant genes using a novel hybrid method

Identifying genes underlying complex diseases/traits that generally involve multiple etiological mechanisms and contributing genes is difficult. Although microarray technology has enabled researchers to investigate gene expression changes, but identifying pathobiologically relevant genes remains a challenge. To address this challenge, we apply a new method for selecting the disease-relevant gen...

متن کامل

Global gene expression analysis using microarray to study differential vulnerability to neurodegeneration

Neurodegenerative disorders such as Parkinson’s disease, motor neuron disease and Alzheimer’s disease is characterized by loss of specific cells within certain regions of the brain. One of the most compelling questions is to determine why specific cell populations are vulnerable to neurodegeneration. We addressed this question by studying global gene expression changes using an animal model of ...

متن کامل

Global gene expression analysis using microarray to study differential vulnerability to neurodegeneration

Neurodegenerative disorders such as Parkinson’s disease, motor neuron disease and Alzheimer’s disease is characterized by loss of specific cells within certain regions of the brain. One of the most compelling questions is to determine why specific cell populations are vulnerable to neurodegeneration. We addressed this question by studying global gene expression changes using an animal model of ...

متن کامل

به کارگیری خوشه‌بندی دوبعدی با روش «زیرماتریس‌های با میانگین- درایه‌های بزرگ» در داده‌های بیان ژنی حاصل از ریزآرایه‌های DNA

Background and Objective: In recent years, DNA microarray technology has become a central tool in genomic research. Using this technology, which made it possible to simultaneously analyze expression levels for thousands of genes under different conditions, massive amounts of information will be obtained. While traditional clustering methods, such as hierarchical and K-means clustering have been...

متن کامل

Modification of the Fast Global K-means Using a Fuzzy Relation with Application in Microarray Data Analysis

Recognizing genes with distinctive expression levels can help in prevention, diagnosis and treatment of the diseases at the genomic level. In this paper, fast Global k-means (fast GKM) is developed for clustering the gene expression datasets. Fast GKM is a significant improvement of the k-means clustering method. It is an incremental clustering method which starts with one cluster. Iteratively ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006